Deconstructing Kernel Machines
نویسندگان
چکیده
This paper studies the following problem: Given an SVM (kernel)based binary classifier C as a black-box oracle, how much can we learn of its internal working by querying it? Specifically, we assume the feature space R is known and the kernel machine has m support vectors such that d > m (or d >> m), and in addition, the classifier C is laconic in the sense that for a feature vector, it only provides a predicted label (±1) without divulging other information such as margin or confidence level. We formulate the problem of understanding the inner working of C as characterizing the decision boundary of the classifier, and we introduce the simple notion of bracketing to sample points on the decision boundary within a prescribed accuracy. For the five most common types of kernel function, linear, quadratic and cubic polynomial kernels, hyperbolic tangent kernel and Gaussian kernel, we show that with O(dm) number of queries, the type of kernel function and the (kernel) subspace spanned by the support vectors can be determined. In particular, for polynomial kernels, additional O(m) queries are sufficient to reconstruct the entire decision boundary, providing a set of quasi-support vectors that can be used to efficiently evaluate the deconstructed classifier. We speculate briefly on the future application potential of deconstructing kernel machines and we present experimental results validating the proposed method.
منابع مشابه
Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملBounds on the Generalization Performance of Kernel Machines Ensembles
We study the problem of learning using combinations of machines. In particular we present new theoretical bounds on the generalization performance of voting ensembles of kernel machines. Special cases considered are bagging and support vector machines. We present experimental results supporting the theoretical bounds, and describe characteristics of kernel machines ensembles suggested from the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014